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Abstract. CuGeO3 exhibits a Spin-Peierls (SP) transition, at TSP = 14.3 K, which is announced above 19 K
by an important regime of one-dimensional (1D) pretransitional lattice fluctuations which can be detected
until about 40 K using X-ray diffuse scattering investigations. A quantitative analysis of this scattering
shows that in this 1D direction the correlation length follows the “universal” behaviour expected for the
thermal fluctuations of a real order parameter which characterizes the lattice dimerization. This allows to
define a 1D mean-field temperature, TMF

SP , of about 60 K and invalidates any mean field scenario for the
SP transition of CuGeO3. As TMF

SP is as high as 4TSP we propose that the 3D-SP order is achieved by
the interchain coupling between 1D solitons which form below about 16–20 K. CuGeO3 being in the non-
adiabatic regime, it is also suggested that the observed pretransitional fluctuations of CuGeO3 originate
from the X-ray scattering on a very broad damped critical response of lower frequency than the “critical”
phonon modes. From the quantitative analysis of the 1D fluctuations we also estimate the microscopic
parameters of the SP chain. These parameters allow to locate CuGeO3 close to the quantum critical
boundary separating the gapped SP ground state to the ungapped anti-ferromagnetic ground state. The
vicinity of a quantum critical point emphasizes the role of the quantum and non-adiabatic fluctuations and
the importance of the interchain coupling in the physics of CuGeO3. Finally we compare these findings
with those obtained for the organic SP systems (BCPTTF)2PF6, (TMTTF)2PF6 and MEM(TCNQ)2.
From a similar analysis of the pretransitional lattice fluctuations it is found that (BCPTTF)2PF6 and
(TMTTF)2PF6 are located on the SP gapped classical-quantum boundary and are in the adiabatic regime
where the fluctuations lead to the formation of a pseudo-gap in the spin degrees of freedom. Differently, we
place MEM(TCNQ)2 inside the SP quantum phase around the crossover line between the adiabatic and
non-adiabatic regimes.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.pm Fermions in reduced
dimensions (anyons, composite fermions, Luttinger liquid, etc.)

1 Introduction

A remarkable feature of correlated one-dimensional (1D)
electronic systems is the occurrence of a spin-charge
decoupling when the electrons undergo strong enough
Coulomb repulsions. This is achieved for any finite value
of the intrasite Coulomb repulsion, U , at half band filling
(ρ = 1 electron per site) and for others band fillings when
there are long range enough Coulomb repulsions [1,2]. In
this latter case the charge degrees of freedoms condense
into a 1D-4kF charge density wave (CDW)-Wigner lattice
which modulation wave vector is ρG‖, where ρ is the
average number of electron per site and G‖ = 2π/c is the

a e-mail: pouget@lps.u-psud.fr
b CNRS-UMR 8502

1D lattice’s reciprocal wave vector unit. Strong Coulomb
repulsions thus lead, in the Mott-Hubbard (ρ = 1) and
Wigner-CDW (for simple commensurate ρ values such
as 1/2) cases, to an insulating ground state protected
by an energy gap ∆ρ from the individual charge excita-
tions. This charge localisation does not affect the spin
degrees of freedom whose excitation spectrum remain
gapless. In absence of orbital degeneracy, the exchange
interaction generally favors the antiferromagnetic (AF)
coupling between near neighbour S = 1/2 spins. In
absence of anisotropy and in the localized limit the
interacting S = 1/2 chain is described by the Heisenberg
Hamiltonian, with the exchange constant Jnn. Below
kBTσ ≈ 0.64Jnn, when the magnetic coherence length:

ξAF(T ) ≈ ~vσ/πkBT, (1)



322 The European Physical Journal B

whose spin velocity is given by ~vσ = πJnnc/2, becomes
larger than the interspin distance c, AF (if ρ = 1) or
2kF spin density wave (SDW) (if ρ 6= 1) correlations de-
velop. However, as pointed out by Anderson [3], an im-
portant fraction of the ground state fluctuations of the
S = 1/2 AF Heisenberg chain contains non magnetic sin-
glet components. These components can be picked out
of the quantum fluctuations in presence of an important
spin-phonon coupling allowing the S = 1/2 AF chain
to dimerize [4]. The dimerization forms a lattice of non-
magnetic S = 0 singlet pairs whose magnetic excitations
are separated from the ground state by energy gaps [5].
The Spin Peierls (SP) ground state can be viewed as the
magnetic analog of the 2kF CDW-Peierls ground state ob-
served in 1D conducting systems [6]. The SP dimerization
order parameter has thus the same symmetry as the 2kF

CDW-Peierls bond order parameter (or bond order wave
(BOW) parameter) of the half-filled band metal (ρ = 1).
Thus by increasing the electron-electron repulsions one
passes continuously from a 2kF BOW-Peierls ground state
to a SP ground state. In the literature the SP transition
has been mainly considered in the localized limit which as-
sumes that ∆ρ is much larger than the SP gap, ∆σ. The
consideration of delocalization effects leads to corrections
at the Heisenberg Hamiltonian and thus at the mechanism
of the SP transition [4,7].

At T = 0 K the isolated SP chain undergoes a long
range dimerization when the spin-phonon coupling, α, ex-
ceeds a critical value αc. αc depends upon Jnn and Ω0,
the bare frequency of the critical phonon mode of the SP
transition. αc has about the same value for the XY [8]
and the Heisenberg [9,10,67] SP chains. For α < αc the
SP order is destroyed by the quantum fluctuations. For
α slightly larger than αc a quantum-classical crossover
occurs when the spin-Peierls gap, ∆σ, is of the order of
Ω0. At larger values of α, in the classical regime where
∆σ > Ω0, the spin-Peierls gap still remains renormalized
with respect to its mean field value (i.e. ∆σ < ∆MF

σ , which
will be defined in Sect. 2) by the non-adiabatic corrections
of the phonon field [8]. As the Heisenberg S = 1/2 Hamil-
tonian is spin-rotationally invariant the quantum fluctua-
tions of the phase of the order parameter destroy the AF
or the SDW long range order even at T = 0 K. Thus the
study of the competition between the magnetic and SP
orders observed in several experimental systems requires
the consideration of the interchain coupling: i.e. the ex-
change coupling between neighbouring chains of spins, for
the magnetic order, and the Coulomb coupling between
neighbouring chains of charged dimers, for the SP order.

The first example of dimerisation of a Heisenberg chain
was found for the V4+ zigzag chains of stressed or sub-
stituted VO2 [11]. Then the SP transition has been ob-
served both in half-filled (ρ = 1) and in quarter-filled
band (ρ = 1/2) systems. Typical ρ = 1 SP systems are
TTF-CuBDT [12] and CuGeO3 [13]. Typical ρ = 1/2
SP systems are the organic salts: MEM(TCNQ)2 [14],
(TMTTF)2X [15–17] and (BCTTTF)2X [18], with X=
PF6 and AsF6. A SP transition has also been reported
in the ρ = 1/2 system α′-NaV2O5 [19]. However as the

vanadates are made of parallel ladders and zigzag chains
coupled in a trellis lattice one expects a complex transi-
tion with the coexistence of CDW and SP orders [20]. As
the 4kF charge localisation wave is centered either on the
sites or on the bonds of the chain, the ρ = 1/2 systems
exhibit a richer phase diagram than the ρ = 1 systems.
In the former systems the dimerization of each kind of
4kF CDW lattices leads to a SP ground state with differ-
ent symmetry [21,22]. These SP orders compete also with
different magnetic phases when the magnetic interchain
coupling is considered [23]. Competition between SP and
AF/SDW orders has been reported in the (TMTTF)2X
family and in substituted CuGeO3.

As previously found for the half-filled band Peierls sys-
tems, such as the polyacetylene [24], the SP dimerized
ground state is doubly degenerate. One passes from one
ground state to the other by changing the phase of the
dimerisation by π. This is achieved through a defect of
dimerization, spatially localized on ξS, called a soliton. As
this defect leaves one unpaired site, each soliton bears a
spin 1/2. The solitons are the elementary defects of the
dimerized chain. They are thermally excited and are re-
sponsible, below about TMF

SP /4, to the break of the long
range dimerization order of the isolated SP chain at finite
temperature [25,26] (TMF

SP is the mean field temperature
of the chain which will be defined in Sect. 3). Magnetic
solitons are also induced when the SP chain is polarized
by an external magnetic field, H. Its effect, which is anal-
ogous to that caused by a variation of the band filling of
the Peierls chain from half filling [27,28], leads, after a 1st
order phase transition, to an incommensurate modulated
phase made of equispaced solitons which density increases
with H [29]. Solitons are also created by any kind of struc-
tural defect breaking the SP order [30].

All these considerations show that the underlying
physics of the SP instability is of 1D nature. However until
now the SP transition of CuGeO3 has only been described
within the RPA-mean field approximation [31–35]. It is
however well known, especially from the study of Peierls
systems [36], that such an analysis is not valid for 1D
systems or 3D anisotropic systems presenting an impor-
tant regime of 1D fluctuations. The purpose of this pa-
per is thus to analyse quantitatively previously published
X-ray diffuse scattering data [37,38] in order to stress the
importance of 1D lattice fluctuations in the SP transi-
tion of CuGeO3 and to make the link with the organic
(TMTTF)2X and (BCTTTF)2X SP systems [15,18,26]
which behave similarly. In part II of this paper we shall
summarize several features of the SP transition of pure
CuGeO3 which do not have received a satisfactory expla-
nation until now. In Section 3 the pretransitional X-ray
fluctuations will be quantitatively analyzed and their dy-
namics will be discussed in relationship with the neutron
scattering data in Section 4. Finally, in Section 5, these
findings will be compared to those found in the organic
SP and Peierls systems. Additional concluding remarks
will be presented in Section 6.
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Fig. 1. Schematic representation of the structure of CuGeO3

showing the bonding network between the CuO2 squares and
the GeO4 tetrahedra. The O(2) atoms are shared between the
squares and the tetrahedra and the O(1) atoms are only shared
between the tetrahedra.

2 The Spin-Peierls transition of CuGeO3

Figure 1 shows the anisotropic bonding network of the
orthorhombic (Pbmm) high temperature structure of
CuGeO3. The magnetic S = 1/2 Cu2+ surrounded by
a square of oxygen atoms, denoted O(2) below, forms
ribbons running along the c-direction. These ribbons are
linked together in a zigzag manner with GeO4 tetrahedra
along the b-direction. The linkage with the others GeO4

tetrahedra through elongated Cu-O(1) distances is weaker
in the a direction.

CuGeO3 undergoes a 2nd order SP transition at TSP =
14.3 K revealed by a continuous drop of the spin suscep-
tibility [13] and a progressive lattice dimerisation [37,39].
Structural refinements performed below TSP [40,41] show
a complex distortion pattern involving mostly two nor-
mal modes of deformation characterized by (i) a dimerisa-
tion along c of the Cu chains together with a modulation
of the O(2)-O(2) edge lengths perpendicular to c [(T+

2 )1

mode] and (ii) a twisting of the CuO2 ribbons in the
ab-plane [(T+

2 )2 mode]. The associated atomic displace-
ments modulate the exchange integrals through varia-
tion of the angles of the Cu-O(2)-Cu superexchange path.
Jnn is affected both by the (T+

2 )1 Cu displacement,
which changes the Cu-O(2)-Cu angle, and by the (T+

2 )2

O(2)-O(2) tilting, which changes the O-Ge hybridization
through the variation of the O(2)-O(2)-Ge angle [31]. The
(T+

2 )2 tilting changes also the Cu-O(2)-O(2)-Cu superex-
change path involved in the next near neighbour exchange
integral Jnnn which will be introduced below.

The SP transition forms a singlet-triplet gap, ∆σ, in
the magnetic excitation spectrum the value of which varies

with the reciprocal wave vector from 23 K ([0,1,1/2]:
position of the AF superlattice reflection in substituted
CuGeO3) to 66 K ([1/2,0,1/2]: position of the SP reflec-
tion) [42]. The scaling of the lowest value of the energy
gap, 23 K, with the critical SP temperature, TSP = 14.3 K,
via the BCS-like relationship [43]:

2∆MF
σ ≈ 3.1kBT

MF
SP , (2)

was considered in the literature as the proof that the SP
transition of CuGeO3 is mean-field like with respect to
the lattice degrees of freedom. In fact this equality does
not hold under pressure because the rate of increase of the
lowest value of the energy gap (dLog∆σ/dP=65%/GPa)
is more than two times larger than that of the SP critical
temperature (dLogTSP/dP=25%/GPa) [44]. In addition
the use of the relationship (2) with a gap value taken at
a reciprocal position different from that of the SP critical
wave vector is misleading. If, the average spin gap value of
45 K is used in the relationship (2), a TMF

SP two times larger
than TSP is thus obtained. Also numerical simulations of
the SP-XY [8] and Heisenberg [10,45,46] models show that
when the finite value of the bare frequency, Ω0, of the
critical phonon mode is taken into account the singlet-
triplet gap ∆σ can be sizeably reduced with respect to its
mean field value ∆MF

σ ; ∆MF
σ corresponds to the T = 0 K

SP gap in the extreme adiabatic limit (i.e. in the limit
Ω0 → 0).

A surprising behaviour of CuGeO3 was the measure-
ment above TSP of a spin susceptibility which does not fol-
low the Bonner and Fischer thermal behaviour expected
for a S = 1/2 near neighbour AF Heisenberg chain. It
was however soon realized [47,48] that the thermal be-
haviour of the spin susceptibility of CuGeO3 can be cor-
rectly reproduced if one introduces a next near neighbour
AF exchange interaction Jnnn. The best fit of the spin
susceptibility of CuGeO3 thus leads to Jnn = 160 K and
Jnn/Jnnn = 0.35 [49]. With such a high Jnn/Jnnn ratio,
exceeding the critical value 0.241, the spin chain is frus-
trated, which means that it should exhibit a finite gap
in the spin degrees of freedom even in absence of any
dimerisation. It was thus proposed that the frustration
effects are the driving force achieving the non magnetic
ground state of CuGeO3 [50,51]. However numerical cal-
culations show that with the above quoted value of the
exchange constants the spin gap resulting from the frus-
tration effects is only of 2.4 K [52], i.e. more than one or-
der of magnitude smaller than the experimental gap. The
spin gap thus observed in CuGeO3 results from the lattice
dimerization and not from a pure effect of frustration of
the magnetic interactions. In addition it has been already
pointed out in the literature [53] that the non-adiabatic
coupling of the magnetic degrees of freedom to the phonon
field can induce such a frustration effect. In this respect
it has been also shown that the consideration of a size-
able spin-phonon coupling in the Heisenberg Hamiltonian
leads also to a deviation of the spin susceptibility from the
Bonner and Fisher behaviour [54].

All these features point toward a non standard scenario
for the SP transition of CuGeO3. Thus a reexamination
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Fig. 2. Thermal dependence of the inverse correlation length in the a, b and c (chain) directions of CuGeO3. The filled
symbols are from the photographic investigation of reference [37] and the empty ones from the diffractometric investigation of
reference [38]. The inverse interchain distances 1/a and 2/b are also indicated.

of the mechanism of transition requires a clarification of
the role of the lattice fluctuations and of the dynamics
of the associated phonon field. These topics are the object
of the next two parts.

3 The pretransitional fluctuations

The SP transition of CuGeO3 is announced by an impor-
tant regime of pretransitional fluctuations whose struc-
tural counterpart has been detected up to 40 K [37,38]
by X-ray diffuse scattering. It is also important to precise
that the X-ray scattering is mostly sensitive to the dimeri-
sation of the Cu atoms involved in the (T+

2 )1 mode and
that this mode has the strongest spin-phonon coupling,
according to the analysis of reference [31]. The fluctua-
tions measured by this technics thus probe the Cu lattice
degrees of freedom. Figure 2 gives above TSP the thermal
variation of the inverse correlation length in the a, b and c
principal directions. Below 16 K, the thermal variation of
ξ−1
c is in very good agreement with that of ξ−1

c deduced
from the width of the central peak observed by elastic
neutron scattering [35a,55]. The thermal variation of ξ−1

a

agrees also with that of the synchrotron X-ray scattering
study of reference [56].

The inverse correlation length anisotropy, ξc > ξb > ξa,
reflects the structural anisotropy. More quantitatively the
anisotropy ratio is at 16 K, the crossover temperature
to the regime of 2D fluctuations, of ξc : ξb : ξa = 5 :
3 : 1. This ratio is comparable to that of the short
length scale fluctuations, 7 : 2.5 : 1, measured in the
vicinity of TSP by synchrotron X-ray scattering [57]. The
anisotropy ratio of the correlation lengths of CuGeO3

is slightly larger than the one found in others SP sys-
tems such as (BCPTTF)2AsF6 (3.6 : 2.6 : 1) [18] and
α′-NaV2O5 (3.8 : 1.8 : 1) [58]. In all these compounds the
longest correlation length is in the chain direction, as ex-
pected for a transition driven by the magnetic subsystem.
As far as the pretransitional fluctuations are concerned
MEM(TCNQ)2 shows a quite different behaviour with,
in the critical regime near TSP, an interchain correlation
length longer than the intrachain one [18]. This inverted
anisotropy shows that the SP instability of MEM(TCNQ)2

is driven by a different mechanism. It has been sug-
gested [59] that, as well as in TTF-CuBDT, the SP in-
stability of MEM(TCNQ)2 is driven by a pre-existing soft
lattice mode.

A comparison of the ξi(T )’s of CuGeO3 with the inter-
chain distances (a and b/2) allows to define the crossover
temperatures at which the dimensionality of the fluctu-
ations is reduced. Figure 2 shows that ξa amounts the
interchain distance, a, at 15.5 K (at 16.5 K from the data
of Ref. [56]) and that ξb amounts the interchain distance,
b/2, at 19 K. Thus between TSP and about 16 K the fluc-
tuations are 3D, then 2D (in the bc-plane) until 19 K.
The elastic quantities exhibit a change in their thermal
variations around these crossover temperatures. The crit-
ical divergence of the thermal expansion along b begins to
start in the regime of 2D fluctuations, while that along
a and c is detected in the regime of 3D fluctuations [60].
Below 19 K, in the regime of 2D fluctuations, there is
a deviation from the linear rate of increase of the C33

elastic constant followed by a well pronounced sound ve-
locity softening [61].

A sizeable regime of 1D structural fluctuations takes
place above 19 K, as already pointed out in our first
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Fig. 3. Thermal dependence of the inverse reduced interchain
correlation length ξ0/ξc(T ) in function of the reduced temper-
ature T/TMF

SP . The solid line represents the exact calculation
of the thermal dependence of the inverse correlation length of
a real order parameter in 1D [26]. The 3D SP critical temper-
ature of CuGeO3, TSP, is also indicated.

report [37]. This behaviour is expected when the SP
instability is triggered by the 1D AF correlations. In this
respect Figure 3 shows that above 15.5 K the thermal
dependence of the inverse intrachain correlation length,
ξ−1
c , of CuGeO3 can be well accounted for the exact cal-

culation of the1D fluctuations for a real order parameter,
which is of the relevant symmetry to describe the SP
dimerization. This calculation, using the transfer matrix
method applied to the Landau-Ginzburg functional,
shows [25] that there are two regimes of fluctuations:

- above 0.4TMF
SP , a regime of renormalized Gaussian

fluctuations, where:

(ξc/ξ0)−1 ≈ [(T/Teff)− 1]1/2, with Teff ≈ 0.3TMF
SP ,

(3)

- below about 0.2–0.3TMF
SP , a regime of thermal exci-

tations of domain walls (solitons) which cut the SP chain
into ordered domains whose inverse size is given by:

(ξc/ξ0)−1 ≈ (2TMF
SP /T ) exp−(aT SP

MF/T ), with a ≈ 0.92.
(4)

In these expressions, ξ0 = ξAF(TMF
SP ) is given by (1)

and TMF
SP is the temperature at which the coefficient of

the second order term of the Landau-Ginzburg functional
vanishes.

These two regimes are separated, at about TMF
SP /3, by

an inflection point in the thermal dependence of ξ−1
c . In

CuGeO3 this inflection point can be guessed around 20 K.
This location leads to a mean field temperature, TMF

SP ,

of about 60 K. The scaling of the experimental results
with the 1D calculation allows to fix the SP coherence
length ξ0 at 4 Å. This leads, with TMF

SP = 60 K, to a near
neighbour exchange integral of Jnn = 160 K, which value
agrees quite well with that reported in the literature [49].
Figure 3 indicates that at TMF

SP ξc amounts at 3 Å, the in-
terspin distance. TMF

SP is thus the temperature at which
the 1D-SP fluctuations begin to develop by coupling the
first neighbouring spins. The same physics was found in
the organic SP compound (BCPTTF)2 AsF6 [26]. In ref-
erence [35a], the thermal dependence of our experimental
ξ−1
c was fitted using a RPA treatment of the SP transition

of CuGeO3. The agreement is poorer than the one shown
Figure 3.

It is particularly interesting to remark that TMF
SP cor-

responds at about the temperature, 55 K, at which the
spin susceptibility exhibits a maximum [13,37,49]. This
indicates that the SP structural correlations develop con-
jointly with the growth of the 1D-AF short range or-
der [50]. Such a synchronous behaviour can be understood
if the magnetic and SP fluctuations are linked by a sizeable
spin-phonon coupling (α ∼ Jnn), in agreement with the
literature [45,46]. The occurrence of a sizeable magnetoe-
lastic coupling between the elastic and magnetic degrees
of freedom of CuGeO3 is also sustained by the thermal
behaviour of the lattice expansion coefficients, α′i, which
exhibit a sizeable anomalies around 60 K under the form
of an extremum for α′a and α′c and of a change of slope for
α′b [60]. The thermal variation of the a and c lattice pa-
rameters changes in an opposite manner the Cu-O(2)-Cu
angle which is the basic deformation of the (T+

2 )1 criti-
cal mode. The thermal variation of b modifies the O(2)-
O(2)-Cu angle which is the basic deformation of the (T+

2 )2

critical mode, where the twisting of the CuO2 ribbons is
correlated with a displacement of the GeO4 tetrahedra
along b.

The intrachain correlation length measurements show
that around TMF

SP /3 ∼ 20 K there is a crossover from
the renormalized Gaussian regime to the regime of ther-
mal excitation of solitons. This corresponds also at about
the temperature at which the interchain coupling along
b is set. The solitons are in fact well defined only be-
low 16 K when ξc becomes larger than the soliton width
ξS(∼ 20 Å according to the NMR measurements [62]). At
this temperature the weakest interchain coupling along a
becomes also relevant and the 3D critical regime starts.
It thus appears that the 3D-SP transition, which occurs
at about TMF

SP /4 in CuGeO3, is driven by the interchain
coupling between the just formed 1D solitons. The inter-
chain coupling between solitons could provide the suitable
explanation of the great sensitivity of the SP transition to
the disorder. Thus the large drop of the SP critical tem-
perature TSP observed in substituted CuGeO3 could be
achieved by the pinning of solitons on the substituents. In
this respect it is interesting to note that the typical size of
the non 3D ordered SP domains observed in substituted
CuGeO3, πξD

c (∼60 Å in weakly substituted Si solid so-
lutions [38]), is comparable to the soliton size 2ξS. This
point will be addressed in a companion paper [63].
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4 Dynamics of the fluctuations

CuGeO3 develops pretransitional fluctuations on a large
temperature range of about 2–3 times TSP, as usual for 1D
systems where the onset of 3D order is conditioned, for a
weak interchain coupling, by the development of a long
enough intrachain correlation length (until the formation
of solitons in the present case). X-ray diffuse scattering ex-
periments, which integrates in energy these fluctuations,
give only “thermodynamical” informations, but does not
provide any information on the dynamics of the fluctua-
tions. A combined discussion with the inelastic neutron
scattering results is thus necessary in order to precise the
microscopic mechanism of the phase transition.

Inelastic neutron scattering measurements reveal that
the phonons associated to the (T+

2 )1 and (T+
2 )2 critical

modes have a quite high frequency, of 310 K and 150 K
respectively [64]. The first surprise is to found two criti-
cal modes for a single structural transition. The simplest
explanation is that the real critical mode is the (T+

2 )1

mode of dimerisation of the Cu chains of higher energy
(this mode has the strongest spin-phonon coupling, ac-
cording to the analysis of Ref. [31]). Its instability drives
that of the (T+

2 )2 mode of same symmetry but of lower
frequency. The second surprise is that the frequency of
these two modes does not soften when the temperature
decreases (a slight hardening of their frequency is even
observed). The only critical effect that has been observed
until now from the various neutron scattering investiga-
tions is the growth of a central peak in energy below about
16 K, in the regime of 3D fluctuations [55]. The onset of a
central peak, which signals the slow dynamics of “heavy”
objects, is consistent with the presence of solitons. Con-
sistently, the central peak is observed in the temperature
range where solitons are formed according to our interpre-
tation of the thermal dependence of ξc. However we have
performed in reference [38] a comparison of the X-ray dif-
fuse scattering intensity with that of the elastic neutron
scattering which shows that above TSP most of the X-ray
pretransitional intensity has an inelastic component. This
inelastic structural component, which should be observed
until about TMF

SP , has not yet be detected by neutron scat-
tering (see note added in proof). Its detection should be
particularly difficult because of its overlap or mixing with
the continuum of AF excitations [64]. However a recent
detection of interferences in the polarized neutron inelas-
tic scattering from CuGeO3 [65] shows the presence of
composite spin-lattice excitations, on an energy range of
at least kBT

MF
SP , below and above TSP.

The understanding of the pretransitional dynamics of
the SP transition thus requires the complete calculation
of the frequency and thermal dependences of the phonon
spectral function including the 1D fluctuations. Such a
calculation has not yet be performed. A qualitative de-
scription, neglecting the low dimensional structural fluc-
tuations, can be obtained from a RPA treatment of the
spin-phonon coupling. Such an analysis has recently be
performed for the exactly solvable XY model of the SP
transition [35]. For the Heisenberg model, more relevant to

describe the SP instability of CuGeO3, an analytic deriva-
tion has been done in the adiabatic regime [33] and a
numerical simulation was performed whatever the respec-
tive values of TMF

SP and Ω0 [66]. Below we shall summarize
the main results of this last study which qualitatively ac-
counts for the first time of all the observations performed
in CuGeO3. Figure 4 gives in reduced scales the temper-
ature (T/TMF

SP ) and frequency (ω/Ω0) dependences of the
imaginary part of the retarded phonon propagator at the
critical wave vector qSP, Im D(qSP, ω), for different val-
ues of TMF

SP /Ω0. This quantity is simply related to the SP
phonon spectral function, S(qSP, |ω|) by the relationship:

S(qSP, |ω|) = coth(~|ω|/2kBT )Im D(qSP, ω). (5)

In the adiabatic regime, for TMF
SP ≥ Ω0 (Figs. 4a and b),

there is a soft phonon dynamics, where the frequency of a
well defined critical phonon mode vanishes at TMF

SP . In
this regime the softening of the frequency of the criti-
cal phonon is mean field like [33]. In the extreme non-
adiabatic regime, for TMF

SP � Ω0 (Fig. 4d), only a well de-
fined central peak exhibits a critical growth together with
a critical sharpening as the temperature tends to TMF

SP (the
same result is shown Fig. 8 in Ref. [35a]). The frequency of
the phonon mode, which was critical for TMF

SP ≥ Ω0, stays
constant at Ω0 in temperature. There is thus a complete
decoupling between the low and high frequencies parts of
the spectral function. It was found reference [33] that, in
the RPA approximation, there is no more softening when
the ratio TMF

SP /Ω0 is lower than Rc = 0.46. In the case
where TMF

SP is less than RcΩ0, the phonon spectral func-
tion exhibits a quite complex frequency dependence which
has not yet be described in detail. Numerical simulations
reported Figure 4c shows the thermal dependence of the
spectrum for TMF

SP = 0.2Ω0, which corresponds, accord-
ing to our determination of TMF

SP = 60 K, to the case of
CuGeO3 (we take also Ω0 = 310 K, assuming that the
most critical phonon mode is (T+

2 )1). When the temper-
ature decreases the intensity of the low frequency range
of the spectrum grows critically, while the intensity of its
larger frequency range gently decreases. The overdamped
and critical nature of the low frequency part of phonon
spectrum results from the mixing of the lattice degrees
of freedom with the spin excitations. We think that this
is the critical growth of the low frequency part of the
phonon spectrum, which extents on a frequency range of
about Ω0/2, which gives rise, by frequency integration, to
the observed critical X-ray diffuse scattering (this quan-
tity is proportional to S(qSP, t = 0), the t = 0 Fourier
transform of S(qSP, ω) given by the expression (5)). In the
high frequency part of the spectrum the “critical” phonon
mode hardens as the temperature decreases. The phonon
mode hardening, already found in reference [33], could be
due to a reduction of the “screening” of the phonon fre-
quency by the gapping of the continuum of magnetic ex-
citations. It has been observed in CuGeO3 below about
120 K ∼ 2TMF

SP [64]. Note that if TMF
SP is taken equal at

TSP, as it is done in reference [35], CuGeO3 would corre-
spond to the situation depicted Figure 4d which does not
exhibit the phonon hardening effect.
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Fig. 4. RPA calculation of the reduced frequency (ω/Ω0) dependence of the imaginary part of the retarded critical phonon
propagator, Im D(qSP, ω), for different values of TMF

SP /Ω0: 10 (a), 1 (b), 0.2 (c) and 0.05 (d), and represented between TMF
SP and

2TMF
SP by step of 0.2 TMF

SP (from Ref. [66]).

In presence of 1D fluctuations and in the classical SP
regime, for α � αc, it is expected, by analogy with the
treatment of the classical Peierls chain [68], that the con-
cept of soft mode remains valid. But, as there is no SP
transition at finite temperature in 1D, the frequency soft-
ening will continue below TMF

SP in the renormalized Gaus-
sian regime previously introduced. However one expects to
observe below Teff (defined in expression (3)), in the soli-
tonic regime, the growth of a central peak. For α ≥ αc, the
low energy part of the spectral function will still be con-
ditioned by the presence of solitons. The dynamics associ-
ated to the formation of solitons which connect doubling
degenerate states, whose phase of the dimerisation differs
by π, is of the order-disorder type. In this respect, it has
been shown [9] that at T = 0 K the phonon spectral func-
tion keeps a divergent weight extending to zero frequency
(central peak) whatever α. However for α < αc, when
there is no SP ground state, the phonon spectral function
presents an energy gap with the central peak. It’s only for
α > αc, when the SP gap develops at T = 0 K, that the
phonon spectral function exhibits a continuum between
the central peak and the “critical” phonon mode, as found
in the RPA calculation.

Although the RPA calculation qualitatively accounts
for the shape of the spectral function, a detailed analysis
must take into account the fluctuations leading to the for-

mation of solitons which occurs below about 20–16 K in
CuGeO3, according to the conclusions of Section 3. This
effect is all the more important that we shall suggest, in
the next section, that CuGeO3 is close to the ungapped
quantum limit.

5 Comparison with organic Spin-Peierls
and Peierls systems

5.1 Adiabaticity

Table 1 gives the 3D critical temperature (TSP) of var-
ious SP systems, their 3D spin gap (∆σ), the tempera-
ture (TF) at which the 1D fluctuations start (except for
MEM(TCNQ)2 where TF corresponds at the start of the
3D critical fluctuations [18]), the mean field gap calculated
from the expression (2) assuming that TF = TMF

SP , the bare
frequency of the phonon mode associated to the SP insta-
bility (Ω0) and finally the near neighbour exchange inter-
action (Jnn) deduced from a fit of the thermal dependence
of the spin susceptibility (in the case of CuGeO3 the best
fit leads also to a next near neighbour exchange interac-
tion Jnnn [49] which is not reported in the table). Table 1
compares also these SP systems with two different Peierls
systems. In these Peierls systems the gap ∆ occurs in both
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Table 1. 3D-SP critical temperature TSP, temperature at which the 1D fluctuations start TF, 3D-SP gap ∆σ, mean field gap
∆MF
σ (given by the expression (2)), bare phonon frequency Ω0, near neighbour exchange integral Jnn, SP coherence length ξ0,

fraction F of the 1D Brillouin zone affected by the fluctuations, Cross and Fisher reduced spin-phonon interaction, λCF, and
spin-phonon coupling |α|, for CuGeO3, MEM(TCNQ)2, (TMTTF)2PF6 and (BCPTTF)2PF6. This table gives also the analog
quantities TP, TF, ∆, ∆MF (using the expression (6)), Ω0, Fermi energy EF, ξ0 and F for the Peierls transition of TTF-TCNQ
and K0.3MoO3. (a), (b) and (c) are respectively the “2kF” frequency of the longitudinal (LA) and transverse (TA) acoustic
modes of MEM(TCNQ)2 [74], TEA(TCNQ)2 [86,87] and TTF-TCNQ [69,78].

TSP(K) ∆σ/kB(K) TF(K) ∆MF
σ /kB(K) ~Ω0/kB(K) Jnm/kB(K) ξ0(Å) F λCF |α|/kB(K)

CuGeO3 14.3 23–66 60 90 310 160 4 0.25 0.47 190

(150)

MEM(TCNQ)2 18 30 40∗ 60 100a–85b(LA) 106 Pre-existing 0.47 60–90

∼ 50b(TA) Soft mode

(TMTTF)2PF6 19 32 ∼80 ∼125 80c(LA) 420 14(2) 0.15–0.25 0.24 90–110

60c(TA)

(BCPTTF)2PF6 36 44 100 150 50c(TA) 330 10(2) 0.25–0.3 0.38 100–125

Tp(K) ∆/kB(K) TF(K) ∆MF/kB(K) ~Ω0/kB(K) EF/kB(K) ξ0(Å) F

TTF-TCNQ 53 230 150 260 60 9103 8(1) 0.4–0.3

K0.3MoO3 183 870 ∼500∗∗ ∼880 80 6103–104 18(1) 0.1

∗ In MEM(TCNQ)2, TF is the temperature at which the critical fluctuations start [18].
∗∗ In K0.3MoO3, TF is the temperature at which there is a deviation from the linear rate of decrease of the spin susceptibility
upon cooling [71].

the charge and spin degrees of freedom and EF, given by
photoemission measurements, plays the role of Jnn.∆MF

is deduced from TF by the BCS relationship [36]:

2∆MF = 3.52kBTF. (6)

In the Peierls systems quoted in Table 1 the lattice and
electronic degrees of freedom are well decoupled: EF �
∆ > Ω0. In addition one has ∆ ≈ ∆MF, which shows that
these compounds are in the classical limit where there is no
important renormalisation of the Peierls gap due to quan-
tum fluctuations. Also a well defined 2kF phonon mode
softens. The phonon softening is nearly complete at TP

in K0.3MoO3 [69], where TF � Ω0. The phonon soften-
ing is however incomplete in TTF-TCNQ and the critical
growth of a central peak was detected few degrees above
TP [70], recalling the dynamics of the SP chain in the vicin-
ity of the critical ratio Rc. Nevertheless these compounds
still belong to the adiabatic limit where the dynamics of
the 2kF structural fluctuations are slow enough, with re-
spect to the inverse coherence time of the electronic CDW,
to induce a pseudo-gap in the (charge) density of states.
The growth of a pseudo-gap has been observed below TF

both in K0.3MoO3 [71] and in TTF-TCNQ.
One has the reverse situation between the lattice and

electronic (i.e. magnetic) degrees of freedom in CuGeO3.
The inequalities Ω0 > Jnn > ∆MF

σ > ∆σ place CuGeO3

in the non-adiabatic limit, consistently with the analy-
sis of the lattice dynamics, performed in Section 4, and
in agreement with the literature [45,54]. For CuGeO3 we

shall consider belowΩ0 only for the (T+
2 )1 mode which has

a stronger spin-phonon coupling than the (T+
2 )2 mode,

which phonon frequency is indicated in parentheses in
Table 1. When the phonon subsystem is faster than the
spin subsystem (Ω0 > Jnn) the (temperature dependent)
non-adiabatic corrections lead to a renormalisation of the
nearest neighbour exchange integral Jnn and introduce a
next nearest neighbour AF exchange coupling constant
Jnnn [53]. In this case the spin subsystem can be described
by a frustrated Heisenberg AF Hamiltonian which fits
nicely the thermal dependence of the spin susceptibility
of CuGeO3 [49]. In the non-adiabatic limit the pretransi-
tional fluctuations are too fast to lead to the formation of
a pseudo gap in the spin density of states. Indeed in the
SP phase of CuGeO3 the gap drops abruptly on heating
above 11 K, loosing a factor 2 at TSP [42]. However over-
damped gapped excitations can still be guessed slightly
above TSP in the 3D critical regime. The unusual thermal
behaviour of the gap of CuGeO3 has been explained by
invoking either the vicinity of a tricritical point [72,32] or
Kosterlitz-Thouless like fluctuations [56].

In (BCPTTF)2PF6 one has the inequalities: Jnn >
∆MF
σ > Ω0 ≈ ∆σ which places the compound in the

adiabatic limit. Only the first neighbour exchange Jnn is
required to account for the temperature dependence of
the spin susceptibility. According to Figure 4 one expects,
with TF/Ω0 ∼ 2 − 1.25, a soft mode behaviour whose
slow fluctuations lead to the development of a pseudo-
gap in the (spin) density of states and a drop of the spin
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susceptibility below TF [26]. However the too small crys-
tal size prevents a neutron scattering investigation of the
phonon spectrum. In (BCPTTF)2PF6 the localized limit
remains a good approximation because ∆ρ ∼1000 K is
substantially larger than ∆MF

σ . In (TMTTF)2PF6, with
Jnn � ∆MF

σ > Ω0 > ∆σ, there is a better decou-
pling between the lattice and magnetic degrees of free-
dom than in (BCPTTF)2PF6. With TF/Ω0 ∼ 1.6–1 one
still expects, as for (BCPTTF)2PF6, a soft mode be-
haviour, and consequently the presence of a pseudo gap.
Indeed magnetic measurements reveal its development be-
low 60 K (∼TF) [16,17]. The decoupling between the
charge and spin degrees of freedom is however smaller than
in (BCPTTF)2PF6 because ∆ρ, of about 300 K accord-
ing to the recent data of reference [73], is not much larger
than ∆MF

σ . As the electrons are only weakly localized, the
theory of the SP transition of (TMTTF)2PF6 should be
modified in order to include the itineracy of the charge de-
grees of freedom (i.e. the transfer integral t). This has been
performed in reference [7] in the adiabatic limit. However
it has been pointed out [4] that near the metal-insulator
boundary the successive corrections in t/U can also lead
to an effective frustrated Heisenberg coupling between the
spin degrees of freedom.

MEM(TCNQ)2, with Jnn > ∆MF
σ ≈ Ω0 > ∆σ,

presents a situation intermediate between those of
(BCPTTF)2PF6 and of CuGeO3. MEM(TCNQ)2 is prob-
ably just at the boundary between the adiabatic and the
non-adiabatic limits. In this respect, the thermal depen-
dence of the spin susceptibility, which is nicely fitted on
all the temperature range by the Bonner and Fischer
plot [14], indicates neither the formation of a pseudo-gap
nor the presence of a sizeable Jnnn. The only electronic
quantity which shows an anomaly is the thermal depen-
dence of the EPR linewidth which rate of decrease di-
minishes below TF [18].The X-ray diffuse scattering in-
vestigation [74,18] reveals the existence of a preexisting
3D lattice instability. This instability is already well de-
velopped at room temperature. On cooling the associated
X- ray diffuse scattering intensity slightly increases, then
saturates below 80 K until TF ∼ 40 K, temperature be-
low which it diverges [75]. However with a small ratio
TF/Ω0 ∼ 1−0.4 the magnetic chains are probably not
able to trig any phonon softening in the acoustic modes
of deformation (of bare frequency Ω0 given Tab. 1); the
SP distortion of MEM(TCNQ)2 being acoustic like [76].
This picture is consistent with the non observation of a
pseudo-gap. Finally let us recall that, as far as the lattice
degrees of freedom are concerned, the SP instability of
MEM(TCNQ)2, as well as that of TTF-CuBDT [75], dif-
fer from that observed in the others systems where there
is a sizeable regime of 1D structural fluctuations which
induces a local dimerization coupling progressively first
neighbouring spins into a S = 0 non-magnetic state. In
MEM(TCNQ)2 the SP critical fluctuations grow from a
preexiting 2D or 3D lattice instability. It is only at TF,
below Tσ, when the AF correlation length becomes com-
parable to the structural correlation length of the preex-
isting soft lattice mode, ξc ∼ 17 Å (i.e. ∼2c), that the

critical SP regime starts. In MEM(TCNQ)2 ξAF amounts
to about 2c at Tσ/2 ∼ 35 K, a temperature close to TF. At
lower temperature the further growth of the magnetic cor-
relations probably drives the divergence of the correlation
length of the structural dimerization.

5.2 Spin-phonon coupling

Table 1 gives also the SP coherence length ξ0 deduced from
the experimental data. It is interesting to remark that in
(BCPTTF)2PF6 (10(2) Å/12 Å) and in (TMTTF)2PF6

(14(2) Å/12 Å) the experimental ξ0 (left side of the
parentheses) agrees within experimental errors with ξ0 =
ξAF(TMF

SP ) calculated from the expression (1) (right side of
the parentheses). In MEM(TCNQ)2, ξ0 calculated with TF

is two times smaller than ξc measured at TF, which again
points out for the existence of a different mechanism for
the SP transition.

With these ξ0 values it is possible to define the frac-
tion, F , of the 1D Brillouin zone, associated to the chain
repeat unit, which is affected by the fluctuations and thus
to determine which (weak or strong?) spin-phonon cou-
pling limit is the most appropriate to describe the SP
transition. This fraction is simply given, Table 1, by the
quantity F = 2(ξ0G‖)−1, where ξ0 is the above quoted
coherence length, when the critical wave vector, qc, is at
the Brillouin zone boundary (qc = G‖/2 for a SP insta-
bility). In a comparison purpose Table 1 gives also F for
the two Peierls systems previously considered. However in
that case F is two time larger because qc = 2kF being
inside the Brillouin zone both the +2kF and −2kF criti-
cal wave vectors of the fluctuations have to be counted.
In the case of a 2kF phonon softening this fraction, F ,
can be alternatively given by the ratio 4∆q/G‖, where ∆q
is the full width at half maximum of the Kohn anomaly.
If F � 1, few phonon modes are involved in the SP or
Peierls instability. The phonon entropy can be neglected,
and thus the transition is described by the BCS weak
coupling mean-field scenario, if one neglects the 1D lat-
tice fluctuations. In this scenario the SP or Peierls gap
and the critical temperature are related respectively by
the relationships (2) or (6). This scenario holds for the
blue bronze K0.3MoO3, where F ∼ 0.1. In the opposite
limit where F ∼ 1, the instability nucleates from a lo-
cal distortion, whose size is given ξ0, and there are thus
so much phonon modes involved that one cannot neglect
the lattice entropy. This implies a strong coupling sce-
nario between the electronic and lattice degrees of free-
dom. TTF-TCNQ, with F ∼ 0.4−0.3, is not too far from
this limit. Similar values of F are found in the transition
metal dichalcogenides, such as 2H-TaSe2 and 2H-NbSe2,
for which a strong coupling theory of the Peierls transi-
tion has been performed [77]. This strong coupling theory
gives an enhancement of the Peierls gap and thus the BCS
relationship (6) no longer hold: the ∆MF/TMF

P ratio is en-
hanced with respect to the BCS ratio. Table 1 shows that,
with F ∼ 0.25, CuGeO3 is in the intermediate coupling
regime. This seems also to be the case for (BCPTTF)2PF6

and (TMTTF)2PF6.



330 The European Physical Journal B

Alternatively, the spin-phonon coupling can be ob-
tained under a reduced form, λCF, from the mean-field
expression of Cross and Fischer [59]:

kBT
MF
SP = 0.8JnnλCF. (7)

λCF is given in Table 1 for the different SP systems.
It shows that CuGeO3 is in the intermediate coupling
regime, as MEM(TCNQ)2. The coupling appears to be
smaller in (BCPTTF)2 PF6 and in (TMTTF)2 PF6. From
the relationship:

λCF = 2α2/(πJnnΩ0) (8)

one can deduces (Table 1) the absolute value of the spin-
phonon coupling |α|. In CuGeO3 |α| is comparable to
Jnn, and about two times larger than the mean field gap
∆MF
σ . Our determination gives a |α| value two times larger

that the one deduced from the mean-field analysis of ref-
erence [31] where the lower bound of ∆σ was used in-
stead of ∆MF

σ ≈ 0.8α2/Ω0 [43]. In (BCPTTF)2 PF6 and
(TMTTF)2 PF6 |α| amounts to about Jnn/3 and Jnn/4
respectively, and is comparable to ∆MF

σ .

5.3 Spin-Peierls ground state

In the localized limit, the T = 0 K SP phase diagram
depends upon the reduced variables α/Jnn and Ω0/Jnn.
The boundary between the classical and quantum gapped
phases, as well as the gapped-ungapped quantum criti-
cal boundary, have been determined for the XY-SP chain
coupled with “site phonons” [8] but only the latter critical
boundary is available for the Heisenberg-SP chain coupled
with “site phonons” [10] or “bond phonons” [67]. Accord-
ing to Figure 2 in reference [8], the data of Table 1 indicate
that:

- CuGeO3, as well as MEM(TCNQ)2, are inside the
quantum gapped state, with CuGeO3 closer to the quan-
tum gapless boundary than MEM(TCNQ)2,

- (BCPTTF)2PF6 and (TMTTF)2PF6 are on the
classical-quantum boundary in the gapped state.

With the spin-phonon Hamiltonian considered in ref-
erence [10] CuGeO3 is inside the quantum gapped state,
while for that of reference [67] CuGeO3 is at the quantum
gapless boundary [88].

Our analysis places CuGeO3 both in the intermediate
coupling regime and in the non-adiabatic limit, as pre-
viously reported in the literature [45]. However while a
strengthening of the coupling enhances the SP gap, the
non-adiabatic corrections tends to depress it. The location
of CuGeO3 in the quantum region very near the critical
boundary to the gapless quantum region, corresponding
to the critical spin-phonon coupling αc, means that the
non-adiabatic corrections are the strongest. In presence of
quantum fluctuations the 1D-SP gap should vary exponen-
tially with |α − αc| [8,10]. In this respect it is interesting
to remark that with the microscopic constants of Table 1
one finds, from the calculation of reference [10] performed
with Ω0 = Jnn, that the spin Peierls gap of CuGeO3, ∆σ,

amounts at about half its mean field value, ∆MF
σ . This is

in agreement with the ratio of the gaps quoted Table 1.
Using the calculations of reference [46], performed

with Ω0 = 0.3Jnn, and the microscopic constants of Ta-
ble 1 one obtains a singlet-triplet gap of ∆σ ≈ 35 K for
(TMTTF)2PF6 and of ∆σ ≈55 K for (BCPTTF)2PF6.
These calculated values are in quite good agreement with
the experimental ones deduced from the thermal depen-
dence of the spin susceptibility below TSP (32 K [17] and
44 K [89] respectively – see Table I).

5.4 Pressure dependence

It is interesting to remark that the SP critical temper-
ature varies strongly under pressure. TSP increases size-
ably in CuGeO3 (dLog TSP/dp amounts to +25%/GPa
[79,80,51]) and in MEM(TCNQ)2 (+100%/GPa [81]).
Contrarily, TSP of (TMTTF)2PF6 decreases strongly un-
der pressure (−30%/GPa). However the phase diagram of
this latter compound is quite complex with the presence of
several ordered states competing with the SP phase [82].
In these SP compounds the rate of variation of TSP is much
stronger than the one observed in the Peierls systems
(+9%/GPa in TTF-TCNQ, −8%/GPa in K0.3MoO3).

As in any 1D system, the TSP variation is due to the
combined effect of the variations of the interchain coupling
and of the intrachain interactions. Basically one has [36]:

kBTSP ≈ zC⊥ξc(TSP)/c, (9)

where C⊥ is the interchain coupling energy, z is the num-
ber of neighbouring chains and ξc(T ) is the intrachain
correlation length (shown Fig. 3 in function of TMF

SP =
0.57α2/Ω0 and of ξ0 = cJnn/2kBT

MF
SP ). All these quanti-

ties can vary under pressure. Thus one has to consider, in
addition to the probable increase of C⊥ under pressure,
the pressure dependence of the intrachain interactions.
Generally Ω0 increases under pressure (dLogΩ0/dp > 0)
[51]. In CuGeO3 the pressure dependence of the first
neighbour exchange integral is negative, dLogJnn/dp =
−7%/GPa, while that of Jnnn can be neglected [49]. The
pressure dependence of α is more difficult to evaluate.
With α ∝ ∇J/

√
Ω0, one obtains:

dLog|α|/dp = dLogJ/dp− 0.5dLogΩ0/dp, (10)

if one assumes that J decreases exponentially with the
distance (∇J ∝ −J). With (10) one gets:

dLogTMF
SP /dp = 2(dLogJ/dp− dLogΩ0/dp), (11)

and:

dLogξ0/dp = −dLogJ/dp+ 2dLogΩ0/dp. (12)

The rate of variation of these quantities is determined by
differences between dLogJ/dp and dLogΩ0/dp. If one as-
sumes that the hydrostatic pressure dependence of |α| in
CuGeO3 is simply given by the expression (10), the nega-
tive pressure dependence of Jnn leads to a decrease of |α|.
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Then expressions (11) and (12) show that TMF
SP decreases

and ξ0 increases under pressure. As TSP occurs in the soli-
tonic regime of ξc(T ), one gets from the expression (4):

dLogξc(T )/dp = dLogξ0/dp

+ [a(TMF
SP /T )− 1]dLogTMF

SP /dp, (13)

which gives for TSP ≈ TMF
SP /4:

dLogξc(TSP)/dp ≈ 5dLogJ/dp− 4dLogΩ0/dp. (14)

This expression shows that ξc(TSP) decreases under pres-
sure. Thus the pressure increase of TSP, given by the ex-
pression (9), can be attributed to the increase of C⊥.

However since Jnn/Ω0 decreases under pressure,
αc/Ω0 must decrease too [10]. As |α|/Ω0 behaves similarly,
it is important to determine how the difference |α−αc|/Ω0

varies under pressure because the increase (decrease) of
|α−αc| leads to an increase (decrease) of the 1D-SP gap.
A possible answer can be brought by the pressure depen-
dence of the singlet-triplet dispersion curve. The measure-
ments of reference [44] show that the lowest value of the
singlet-triplet excitation energy of CuGeO3 exhibits a rate
of increase of +65%/GPa, more than two times stronger
than TSP! This means either (i) that the dispersion along
b∗ of the singlet-triplet excitation band (which spreads
on 43 K at ambient pressure) decreases under pressure
or/and (ii) that its mid-band value, which has been iden-
tified at ∆σ in this paper, increases under pressure. Let
us first examine the first scenario (i). Usually one expects,
with the increase of the interchain coupling, an increase
of the dispersion under pressure. The opposite behavior
should indicate that the b∗ dispersion is not due to a sim-
ple interchain exchange coupling but more likely that the
anomalous pressure dependence of the singlet-triplet exci-
tation energy, at the AF critical wave vector, could reflect
a frequency softening related to an incipient AF instabil-
ity. In this scenario, by extrapolating the pressure varia-
tion of its energy, one expects the vanishing of the AF gap
under a negative pressure of −1.5 GPa. At this pressure,
the AF ground state should be stabilized and one should
have α = αc. This scenario is consistent with the conclu-
sions of the previous section placing CuGeO3 very close to
the quantum gapless boundary. The pressure thus would
control the AF-SP phase diagram through the variation of
|α−αc|. In the second scenario (ii), which is not incompat-
ible with the first one, the increase of the mid-band energy
under pressure means an increase of the 3D-SP gap. The
increase of the 3D-SP gap under pressure is consistent
with the increase of Tsp. The increase of the 3D-SP gap
can be both attributed to the increase of |α − αc|, which
leads to an increase of the 1D-SP gap, and to the increase
of the interchain coupling C⊥. The enhancement of the
1D-SP gap could be due to the reduction of the quantum
fluctuations present in the vicinity of the quantum criti-
cal point, αc, of the SP chain (for a general review on the
quantum criticality see Ref. [83]).

6 Conclusion

From the study of the pretransitional lattice fluctuations
we have been able to determine a set of microscopic pa-
rameters which describe consistently the mechanism of
the SP transition of CuGeO3. We have also compared
these parameters with those of the others organic SP sys-
tems. We found that (BCPTTF)2PF6 and (TMTTF)2PF6

are located in the adiabatic limit, that CuGeO3 is in
the non-adiabatic limit and that MEM(TCNQ)2 is at the
boundary between these two limits. (BCPTTF)2PF6 and
(TMTTF)2PF6 are situated on the SP gapped classical-
quantum boundary, MEM(TCNQ)2 is in the quantum SP
gapped phase, while CuGeO3 is also in this latter phase
but closer to the quantum gapless boundary.

The location of CuGeO3 near a quantum critical point,
αc, could facilitate the switch between the gapped SP state
and the gapless AF state. As α decreases and crosses the
critical quantum point αc there is a drop of order pa-
rameter indicating the closing of the spin gap. When the
low energy excitations are described by the sine-Gordon
model [84], which is the case for the generation of soli-
tons in the SP chain, a Kosterlitz-Thouless (KT) type
transition occurs at αc. This KT transition has a hidden
SU(2) symmetry: at the transition the correlation length
is very singular (exponential dependence with a power of
|α−αc|), and for α slightly larger than αc, the 1D SP gap
is an exponentially small quantity of |α− αc|.

In the vicinity of αc the stabilization of the SP state
should depend strongly upon the interchain coupling
and upon the perturbations induced by the atomic sub-
stituents. This is probably a key feature for the interpre-
tation of the phase diagram of CuGeO3 which is governed
by the competition between the gapped SP state and the
gapless AF state. In this respect it is now established that
an extremely small amount of substituent gives rise to the
coexistence between 3D SP and AF orders [85]. We shall
discuss the effect of substituents on the SP transition of
CuGeO3 in a companion paper [63].

At finite temperature in the quantum region near αc

one should also expect anomalous variations of the or-
der parameter reflecting the presence of KT type fluc-
tuations. This could provide an alternative explanation
at the unusual thermal temperature dependence of the
SP order parameter in CuGeO3 [56]. The physical quanti-
ties measured in the vicinity of a critical quantum point,
which depend upon the microscopic parameters through
the difference |α − αc|, are not universal. This statement
could thus appear to be in contradiction with the use of
a “universal” behaviour to interpret the thermal depen-
dence of the intrachain correlation length (Fig. 3). How-
ever a 1D quantum-classical crossover is expected when
the temperature exceeds kBTQC ≈ ∆σ/π (i.e. when the
thermal coherence length is smaller than the quantum co-
herence length associated to the critical point). By tak-
ing ∆σ ≈ 45 K, the crossover temperature is estimated at
TQC ∼ 14 K ≈ TSP. In this picture the pretransitional fluc-
tuations will be in the classical “universal” regime while
the SP ground state will be in the quantum regime.
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This paper is written in memory of Heinz Schulz. It was always
a pleasure and a great mutual benefit to discuss physics with
Heinz. Figure 4 was issued from an unpublished calculation of
Heinz. I thank also Professor J. Friedel for comments on the
manuscipt and S. Ravy for usefull discussions.

Note added in proof

After acceptation of the paper, Nishi et al. reported
[abstract L31-5, Bull. Am. Phys. Soc. 46, 524 (2001)] that
the zone center b*-longitudinal optical phonon mode of en-
ergy of 0.9 meV, which involves the tilt of the O(2)-O(2)
squares [see Nishi et al. J. Phys. Chem. Solids 60, 1109
(1999)], exhibits below 60 K an anomalous decrease of
intensity. Such a decrease could correspond to a huge en-
hancement of the Debye Waller factor of its inelastic struc-
ture factor. This enhancement itself could be provoked by
a large increase of the mean square O(2) displacement due
to the development below TMF

SP of the critical fluctuations
of the (T+

2 )2 SP order parameter.
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